Dismiss this notice
Selamat datang di Forum Kuark, kamu perlu mendaftar terlebih dahulu untuk dapat menggunakan forum ini.
Klik disini untuk mendaftar.
Bila sudah pernah mendaftar, klik disini untuk masuk


Thread Rating:
  • 1 Vote(s) - 5 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Bunglon.
#1
Mengapa bunglon dapat mengubah warnanya sesuai dengan perasaannya dan tempatnya???
Reply
#2
Karena bunglon punya sesuatu di tubuhnya...
Francesco, Kamu tahu kah ?
Reply
#3
iya dewa,aku pernah lihat di buku kuark dia bisa camuflase di mana saja.
Reply
#4
dewa,apakah bunglon adalah kadal?
Reply
#5
Hallo Francesco,
Bunglon dan kadal itu memiliki hubungan kedekatan pada Subordo Sauria.
menurutku bunglon itu adalah salah satu jenis kadal yang ada didunia.
Selain itu masih ada banyak kadal lainnya seperti cicak, komodo dll..
Reply
#6
Comodo Dragon
From Wikipedia, the free encyclopedia
For the lizard, see Komodo dragon.
Comodo Dragon ComodoDragon-Logo.png
Comodo Dragon (web browser).png
Comodo Dragon 16.1, running on Windows 7, showing a security alert after opening Wikimedia Commons
Developer(s) Comodo Group
Stable release
52.15.25.664 (October 5, 2016; 8 months ago[1]) [±]
Development status Active
Operating system Microsoft Windows
Engine Blink[2]
Platform IA-32
Size 53.8 MB
Available in Español
Type Web browser[3]
License Freeware
Website browser.comodo.com

Comodo Dragon is a freeware web browser. It is based on Chromium and is produced by Comodo Group. Sporting a similar interface to Google Chrome, Dragon does not implement Chrome's user tracking and some other potentially privacy-compromising features, substituting them for its own user tracking implementations, and provides additional security measures, such as indicating the authenticity and relative strength of a website's SSL certificate.[3][4]

Contents

1 Security issues
2 Features
3 See also
4 References
5 Further reading
6 External links

Security issues

A Google engineer publicly disclosed a serious security vulnerability in Comodo Dragon after Comodo failed to respond to the issue within the 90 days Google provides software vendors. The advisory warns users who install Comodo Dragon that Dragon replaces their default browser, hijacks DNS settings, and disables the same origin policy, which exposes users by allowing malicious websites to access private data. However, these problems have since been fixed.[5]

Comodo's first attempt to patch the issue was unsuccessful.[6]

The same origin policy protects users by ensuring scripts are limited to accessing resources from the same website, which prevents malicious websites from accessing private data on another webpage.[7]




Lizard
From Wikipedia, the free encyclopedia
For other uses, see Lizard (disambiguation).
Lizards
Fossil range: Early Jurassic – Holocene, 199–0 Ma
PreЄ
Є
O
S
D
C
P
T
J
K
Pg
N
Possible Late Triassic record
Central bearded dragon, Pogona vitticeps
Central bearded dragon, Pogona vitticeps
Scientific classification
Kingdom: Animalia
Phylum: Chordata
Superclass: Tetrapoda
Class: Reptilia
Order: Squamata
Suborder: Lacertilia*
Günther, 1867
Included groups

Anguimorpha
Gekkota
Iguania
Lacertoidea
Scincomorpha

Excluded groups

Serpentes
Amphisbaenia

Synonyms

Sauria Macartney, 1802

Lizards are a widespread group of squamate reptiles, with over 6,000 species,[1] ranging across all continents except Antarctica, as well as most oceanic island chains. The group is paraphyletic as it excludes the snakes which are also squamates.

Contents

1 Biology
1.1 Morphology
1.2 Signalling
1.3 Shedding and regenerating tails
1.4 Reproduction
2 Evolution
2.1 Fossil history
2.2 Phylogeny
2.3 External
2.4 Internal
2.5 Taxonomy
3 Relationship with humans
4 References
5 Sources
6 External links

Biology
Morphology

Lizards typically have four legs feet and external ears, though some are legless, while snakes lack both of these characteristics. Lizards and snakes share a movable quadrate bone, distinguishing them from the sphenodonts, which have more primitive and solid diapsid skulls.

Lizards form about 60% of all the species of extant non-avian reptiles.

The adult length of species within the suborder ranges from a few centimeters for chameleons such as Brookesia micra and geckos such as Sphaerodactylus ariasae to nearly 3 m (9.8 ft) in the case of the largest living varanid lizard, the Komodo dragon. Some extinct varanids reached great size: The giant monitor Megalania is estimated to have reached up to 7 m (23 ft) long; while the extinct aquatic mosasaurs reached 17 m (56 ft).
Signalling
A Green Anole (Anolis carolinensis) signalling with its extended dewlap
Further information: Signalling theory

Vision, including color vision, is particularly well developed in most lizards. Most lizards communicate using body language, using specific postures, gestures, and movements to define territory, resolve disputes, and entice mates. Some species of lizards also use pheromones or bright colors, such as the iridescent patches on the belly of Sceloporus. These colors are highly visible to predators, so are often hidden on the underside or between scales and only revealed when necessary. The particular innovation in this respect is the dewlap, a brightly colored patch of skin on the throat, usually hidden between scales. When a display is needed, a lizard can erect the hyoid bone of its throat, resulting in a large vertical flap of brightly colored skin beneath the head which can be then used for communication. Anoles are particularly famous for this display, with each species having specific colors, including patterns only visible under ultraviolet (UV) light, as many lizards can see UV light.[2]
Shedding and regenerating tails
Lizard tail autotomy
Main articles: Autotomy and Antipredator adaptation

Lizard tails are often a different and dramatically more vivid color than the rest of the body so as to encourage potential predators to strike for the tail first. Many lizards, including geckos and skinks, are capable of shedding part of their tails through a process called autotomy. This is an example of the pars pro toto principle, sacrificing "a part for the whole", and is employed by lizards to allow them to escape from predators. The detached tail writhes and wiggles, creating a deceptive sense of continued struggle, distracting the predator's attention from the fleeing prey animal. The lizard partially regenerates its tail over a period of weeks. A 2014 research identified 326 genes involved in the regeneration of lizard tails.[3] The new section contains cartilage rather than bone, and the skin may be discolored compared to the rest of the body.
Reproduction
See also: Sexual selection in scaled reptiles

Most lizards are oviparous (egg laying), though in some species the eggs are retained until the live young emerge (ovoviviparity). Parthenogenesis (reproduction from unfertilised eggs) occurs in at least 50 species and may be much more widespread in the group.[4][5]

Sexual selection in lizards shows evidence of female mate choice, favouring males display fitness indicators, such as fewer ectoparasites.[6]
Evolution
Fossil history
Fossil lizard Dalinghosaurus longidigitus, Early Cretaceous, China

The earliest known fossil remains of a lizard belong to the iguanian species Tikiguania estesi, found in the Tiki Formation of India, which dates to the Carnian stage of the Triassic period, about 220 million years ago.[7] However, doubt has been raised over the age of Tikiguania because it is almost indistinguishable from modern agamid lizards. The Tikiguania remains may instead be late Tertiary or Quaternary in age, having been washed into much older Triassic sediments.[8] Lizards are most closely related to the Rhynchocephalia, which appeared in the Late Triassic, so the earliest lizards probably appeared at that time.[8] Mitochondrial phylogenetics suggest that the first lizards evolved in the late Permian. It had been thought on the basis of morphological data that iguanid lizards diverged from other squamates very early on, but molecular evidence contradicts this.[9]
Phylogeny
External

The position of the lizards and other Squamata among the reptiles was studied using fossil evidence by Rainer Schoch and Hans-Dieter Sues in 2015.[10]
Archelosauria



ArchosauromorphaDescription des reptiles nouveaux, ou, Imparfaitement connus de la collection du Muséum d'histoire naturelle et remarques sur la classification et les caractères des reptiles (1852) (Crocodylus moreletii).jpgMeyers grosses Konversations-Lexikon - ein Nachschlagewerk des allgemeinen Wissens (1908) (Antwerpener Breiftaube).jpg

Lepidosauromorpha







†KuehneosauridaeIcarosaurus white background.jpg

Lepidosauria



SquamataZoology of Egypt (1898) (Varanus griseus).png




RhynchocephaliaHatteria white background.jpg






Pantestudines Psammobates geometricus 1872 white background.jpg




Internal

Both the snakes and the Amphisbaenia (worm lizards) are clades deep within the Squamata (the smallest clade that contains all the lizards), so "lizard" is paraphyletic.[11] The cladogram is based on genomic analysis by Wiens and colleagues in 2012 and 2016.[12][13] Excluded taxa are shown in upper case on the cladogram.
Squamata
Dibamia

Dibamidae

Bifurcata
Gekkota
Pygopodomorpha



Diplodactylidae Hoplodactylus pomarii white background.jpg






Pygopodidae The zoology of the voyage of the H.M.S. Erebus and Terror (Lialis burtonis).jpg




Carphodactylidae



Gekkomorpha



Eublepharidae

Gekkonoidea



Sphaerodactylidae






Phyllodactylidae Phyllodactylus gerrhopygus 1847 - white background.jpg




Gekkonidae





Unidentata
Scinciformata
Scincomorpha

ScincidaeBilder-Atlas zur wissenschaftlich-populären Naturgeschichte der Wirbelthiere (Plate (24)) Tribolonotus novaeguineae.jpg

Cordylomorpha



Xantusiidae






GerrhosauridaeGerrhosaurus ocellatus flipped.jpg




CordylidaeIllustrations of the zoology of South Africa (Smaug giganteus).jpg




Episquamata
Laterata
Teiformata



Gymnophthalmidae PZSL1851PlateReptilia06 Cercosaura ocellata.png




Teiidae Bilder-Atlas zur wissenschaftlich-populären Naturgeschichte der Wirbelthiere (Tupinambis teguixin).jpg


Lacertibaenia
Lacertiformata

Lacertidae Brockhaus' Konversations-Lexikon (1892) (Lacerta agilis).jpg




AMPHISBAENIA (worm lizards, not usually considered "true lizards") Amphisbaena microcephalum 1847 - white background.jpg



Toxicofera


Anguimorpha
Palaeoanguimorpha
Shinisauria

Shinisauridae

Varanoidea



Lanthanotidae




VaranidaeZoology of Egypt (1898) (Varanus griseus).png



Neoanguimorpha
Helodermatoidea

Helodermatidae Gila monster ncd 2012 white background.jpg



Xenosauroidea

Xenosauridae

Anguioidea



Diploglossidae






Anniellidae




Anguidae






Iguania
Acrodonta



ChamaeleonidaeZoology of Egypt (1898) (Chamaeleo calyptratus).jpg




Agamidae Haeckel Lacertilia (Chlamydosaurus kingii).jpg


Pleurodonta



Leiocephalidae






IguanidaeStamps of Germany (Berlin) 1977, Cyclura cornuta.jpg








Hoplocercidae






Crotaphytidae




Corytophanidae








Tropiduridae








Phrynosomatidae






Dactyloidae




Polychrotidae








Liolaemidae






Leiosauridae




Opluridae













SERPENTES (snakes, not considered to be lizards) Python natalensis Smith 1840 white background.jpg






Taxonomy
Main article: List of Lacertilia families

The name Sauria was coined by James Macartney (1802);[14] it was the Latinisation of the French name Sauriens, coined by Alexandre Brongniart (1800) for an order of reptiles in the classification proposed by the author, containing lizards and crocodilians,[15] later discovered not to be each other's closest relatives. Later authors used the term "Sauria" in a more restricted sense, i.e. as a synonym of Lacertilia, a suborder of Squamata that includes all lizards but excludes snakes. This classification is rarely used today because Sauria so-defined is a paraphyletic group. It was defined as a clade by Jacques Gauthier, Arnold G. Kluge and Timothy Rowe (1988) as the group containing the most recent common ancestor of archosaurs and lepidosaurs (the groups containing crocodiles and lizards, as per Mcartney's original definition) and all its descendants.[16] A different definition was formulated by Michael deBraga and Olivier Rieppel (1997), who defined Sauria as the clade containing the most recent common ancestor of Choristodera, Archosauromorpha, Lepidosauromorpha and all their descendants.[17] However, neither of these uses have gained wide acceptance among researchers specializing in lizards.

Suborder Lacertilia (Sauria) – (lizards)

Family †Bavarisauridae
Family †Eichstaettisauridae
Infraorder Iguania
Family †Arretosauridae
Family †Euposauridae
Family Corytophanidae (casquehead lizards)
Family Iguanidae (iguanas and spinytail iguanas)
Family Phrynosomatidae (earless, spiny, tree, side-blotched and horned lizards)
Family Polychrotidae (anoles)
Family Leiosauridae (see Polychrotinae)
Family Tropiduridae (neotropical ground lizards)
Family Liolaemidae (see Tropidurinae)
Family Leiocephalidae (see Tropidurinae)
Family Crotaphytidae (collared and leopard lizards)
Family Opluridae (Madagascar iguanids)
Family Hoplocercidae (wood lizards, clubtails)
Family †Priscagamidae
Family †Isodontosauridae
Family Agamidae (agamas, frilled lizards)
Family Chamaeleonidae (chameleons)
Infraorder Gekkota
Family Gekkonidae (geckos)
Family Pygopodidae (legless lizards)
Family Dibamidae (blind lizards)
Infraorder Scincomorpha
Family †Paramacellodidae
Family †Slavoiidae
Family Scincidae (skinks)
Family Cordylidae (spinytail lizards)
Family Gerrhosauridae (plated lizards)
Family Xantusiidae (night lizards)
Family Lacertidae (wall lizards or true lizards)
Family †Mongolochamopidae
Family †Adamisauridae
Family Teiidae (tegus and whiptails)
Family Gymnophthalmidae (spectacled lizards)
Infraorder Diploglossa
Family Anguidae (glass lizards)
Family Anniellidae (American legless lizards)
Family Xenosauridae (knob-scaled lizards)
Infraorder Platynota (Varanoidea)
Family Varanidae (monitor lizards)
Family Lanthanotidae (earless monitor lizards)
Family Helodermatidae (Gila monsters and beaded lizards)
Family †Mosasauridae (marine lizards)

Relationship with humans
Green iguanas (Iguana iguana), are popular pets.

Most lizard species are harmless to humans. Only the largest lizard species, the Komodo dragon, which reaches 3.3 m (11 ft) in length and weighs up to 166 kg (365 lb), has been known to stalk, attack, and, on occasion, kill humans. An eight-year-old Indonesian boy died from blood loss after an attack in 2007.[18]

Numerous species of lizard are kept as pets, including bearded dragons,[19] iguanas, anoles,[20] and geckos (such as the popular leopard gecko).[19]

Lizard symbolism plays a role in some cultures (e.g., Tarrotarro in Australian Aboriginal mythology). The Moche people of ancient Peru worshipped animals and often depicted lizards in their art.[21] According to a popular legend in Maharashtra, a common Indian monitor, with ropes attached, was used to scale the walls of the Sinhagad fort in the Battle of Sinhagad.[22]

Green iguanas are eaten in Central America, where they are sometimes referred to as "chicken of the tree" after their habit of resting in trees and their supposedly chicken-like taste,[23] and spiny-tailed lizards are eaten in Africa. In North Africa, Uromastyx species are considered dhaab or 'fish of the desert' and eaten by nomadic tribes.[24]
Reply
#7
(02-04-2017, 09:57 PM)Francesco Wrote: iya dewa,aku pernah lihat di buku kuark dia bisa camuflase di mana saja.

bunglon bukan berkamuflase, francsco..
tetapi mimikri..
Reply
#8
(30-03-2017, 07:49 PM)JohnBennett Wrote: Mengapa bunglon dapat mengubah warnanya sesuai dengan perasaannya dan tempatnya???


Hallo John!

Mengapa bunglon bisa berubah warna?

Menurut penelitian terbaru dari Michel Milinkovitch dan timnya dari University of Geneva, di bawah kulit terluar bunglon terdapat nanokristal spesial. Nanokristal ini memantulkan cahaya dan perubahan ruang antara kristal juga mengubah cahaya apa yang dipantulkan ke mata kita.  

Dalam jurnal Nature Communication, tim peneliti menjabarkan hasil penelitian dari kemampuan menakjubkan bunglon tersebut. satu lapisan sel yang disebut iridophore. Lapisan ini mengandung nanokristal yang terbuat dari guanine. 

Ketika bunglon sedang bersemangat atau mengantisipasi marabahaya, sel iridophore melebar sehingga nanokristal merefleksikan tingkatan beragam dari cahaya. Dari sinilah warna kulit bunglon bisa berubah.


Nah, apakah ada yang mau menambahkan?
Reply
#9
Bunglon adalah salah satu jenis Chameleon. Terdapat lebih dari 100 jenis Chameleon. Ada yang hanya dapat berubah warna dari coklat ke hijau dan sebaliknya, namun banyak juga yang memiliki banyak koleksi warna menakjubkan di tubuhnya.

Pigment unik pada lapisan kulit chameleon memberi kemampuan bunglon untuk mengubah warna. Selama ini kita mengira chameleon mengubah warna karena menyesuaikan dengan lingkungan, atau menyelamatkan diri dari musuh. Mengutip penjelasan National Geographic, ternyata penyebab chameleon berubah warna: Berikut:4 Penyebab Kenapa Bunglon Bisa Berganti Warna

1. Sinar Matahari
Ketika chameleon coklat ingin berjemur di bawah sinar matahari, maka si chameleon akan mengubah warna kulitnya menjadi hijau untuk memaksimalkan refleksi sinar matahari yang didapat.

2. Suhu
Ketika suhu dingin, kulit chameleon akan berubah berwarna lebih gelap untuk memaksimalkan penyerapan panas.

3. Mood
Chameleon jantan yang 'ditantang' chameleon lain bisa berubah warna menjadi merah kekuningan. Atau ketika si chameleon 'fall in love', bisa juga warnanya berubah untuk menarik perhatian, misalnya ungu, biru dan kemerahan.

Bunglon merupakan sejenis reptil yang termasuk ke dalam suku (familia) Agamidae. Banyak orang yang mengartikan bahwa bunglon mengubah warna kulitnya sebagai kamuflase atau respon terhadap musuh dan bahaya. Padahal, sesungguhnya tidaklah demikian.

Bunglon memang memiliki kemampuan untuk mengubah warna kulitnya. Tetapi, bunglon tidak bisa berubah kulit ke semua warna, melainkan hanya ke warna-warna tertentu saja.

Lalu, mengapa bunglon dapat mengubah warna kulitnya? Tentu saja hal ini didukung oleh adanya fungsi dalam tubuh bunglon yang mendukung fungsi tersebut.

4. Bunglon Memiliki Sel-Sel Warna
Bunglon memiliki sel-sel warna di bawah permukaan kulitnya yang transparan. Di bawah lapisan ini terdapat dua lapisan sel yang mengandung pigmen berwarna merah dan kuning (juga disebut chromatophores).

Di bawahnya lagi ada lapisan sel yang merefleksikan warna biru dan putih. Lalu di bawahnya lagi ada lapisan melanin untuk warna coklat (seperti yang dimiliki manusia).


source:http://sigitunittelu.blogspot.co.id/2013/01/4-penyebab-kenapa-bunglon-bisa-berganti.html
Reply
#10
bunglon bisa bermimikri dengan menyesuaikan warna tubuhnya dengan lingkungan..
Reply




Users browsing this thread: 1 Guest(s)